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Abstract

Recently, it has been shown that Dirac’s bispinor equation can be expressed, in an equivalent
tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling con-
stant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian
system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived
directly without using bispinors. In this paper we investigate the Yang-Mills equation for a finite
coupling constant. We show that the nonlinear Yang-Mills equation has exact plane wave solutions
in one-to-one correspondence with the plane wave solutions of Dirac’s bispinor equation. We apply
the theory of nonlinear dispersive waves to establish the existence of wave packets. We investigate
the CPT violation of these nonlinear wave packets, which could lead to new observable effects con-
sistent with current experimental bounds.

1 Introduction

In a recent paper (1] it was shown that square-integrable positive energy bispinor fields in a Minkowski space-
time cannot be physically distinguished from constrained tensor fields. It was also shown [1], (2] that the free
tensor Dirac equation is a completely integrable Hamiltonian system with (non-canonical) Lie algebra type
Poisson brackets, from which Fermi quantization can be derived directly without using bispinors.

Also, it was shown [1] that the tensor Dirac Lagrangian may be derived from the following Yang-Mills
Lagrangian for SL(2,C) X U(1) gauge potentials AX and complex scalar field p:

L =~ {Re [A#f AK] + (D,9) (D%0) — V(ipI?) (1)

where & =p + ¢ where c is a constant, and V = V({p|?) is a smooth (at least twice differentiable) function of
[p1% The gauge potentials AX satisfy the orthogonal constraint:

Al Agp = —1p1% gop (2)

where g.g is the metric tensor. More detailed discussion of formulas (1) and (2) is given in Section 2. With the
further condition:

Limm g2V =1jipl (3)
r

289
PRECEDING PAGE BLANK NOT FILMED



where g is the Yang-Mills coupling constant, and setting ¢ = 2m,/g where m, is the fermion mass, then
the Dirac Lagrangian equals the Yang-Mills Lagrangian (1) in the limit that the coupling constant g tends to

infinity.

The fact that the free Dirac equation is a constrained Yang-Mills equation in the limit of a large coupling
constant is significant for both classical and quantized theories. The classicial theory, which we regard as the
first quantized theory, is characterized by the classical observables given by the electric current J°, the energy-
momentum tensor T°P, and the spin-polarization tensor S These classical observables are sufficient to
describe many experiments with electron beams [3]. The present paper addresses these classical observables.

In Section 2, we consider the Lagrangian (1) for the case of a finite coupling constant g. We show that for
any smooth self-interaction V(| p| 2) the constrained Euler-Lagrange equations have exact plane wave solutions
in one-to-one correspondence with the plane wave solutions of Dirac’s equation. We apply the theory of non-
linear dispersive waves [4] to establish the existence of wave packets.

For the special case V = 3 &21p|* we show that:

a) The mass. m, of each plane wave is independent of amplitude and equals 3 glcl.

b) The wave packets are ldentlcal with bxspmor wave packets '
c) The wave packets are covanant under the CPT operatlon (deﬁned in Sectxon 3)

When V %3 g?lpi*, the propemes (a), (b), and (c) are all violated. However. we show in Sectmn 3 that
these violations could lead to new experimental observatmnl consmtent mth present bounds t‘or CPT viola-

tions.

2 Plane Waves and Wave Packets

In [1] we showed that Dirac’s bispinor Lagrangian equals the Yang-Mills Lagrangian (1) in the limit of an infi-
nitely large coupling constant g. In the remainder of this paper we will investigate the possibly observable

effects of a finite coupling g.
First, we show in this section that the Euler- Lagrange equatxons for (1) and 2) have exact plane wave

solutions in one-to-one correspondence with the plane wave solutions of Dlrac 's equanon For ﬁmte couphng g

and general V, the mass of each plane wave depends on its amplithde given in formula (2)as Ipl. _However, for
the special case in which V = g2 [pl¢, we will see that the mass equals the constant 3 28 ict, and hence is inde-

pendent of amplitude.
Second, we will establish the existence of wave packeta using resulu from the theory of nonlmear dlsper-

sive waves [4]. The most significant departure from linearity is tho splitting of the group velocity for finite g
and general V. However, again for the special case in which V=3 g’ |p|¥, the velocity splitting does not occur,
and the wave packets are identical to the bispinor wave packets whrch are derived from Dirac’s equation.

The Euler-Lagrange equations for (1) and (2) are given by:
D"T\.,,, = -2 A-g K.
D® A2 — 2g Re [i8Dy0] = —2 Re [x,] 7 , 7
D*D, 0+ Vp= m [x,,] P (4)

where A%® = AP gre the Lagrange multipliers for the constraint (2), where V' denotes the derivative of V with
respect to |p I 2 and where the Yang-Mills covariant derivatives D, acting on A and g are given by:
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D, A%y = V,A%
D, A= VA~ gA, XA,
Dio= V,0+igAls (5)
Again, 0 = p + ¢ and solutions AE and p of equations (4) are required to satisfy the constraint (2).

Plane wave solutions of equations (4) are defined by:

AJ(xP) = A%(0)
'A_'a(xﬂ) - e2i9(lﬂ)'!' ‘A"a(o)
p(xP) = p(0) (6)

where x? ¢ R* denotes the space-time coordinates, T generates a one-parameter subgroup of SL(2, C) gauge
transformations, and 6(xP) = Ps x? where PpE R* denotes the momentum variables. Note that if AK(0) and p(0)
satisfy the orthogonal constraint (2), then the same is true for AX(x) and p(zP) for all x € R*, since in formula
(6), the SL(2, C) gauge transformations generated by T preserve the orthogonal constraint. Note also that

TAY=iw XA, (7

for some ® € C? satisfying @ * @ = 1. (The reader is reminded that SL(2, C) is the complexification of SU(2)
for which we can take ® € R3.)

On differentiating formula (6) we get using (7):

vp Xu-—2ppm XAG
Vgp-O (8)

Note in formula (8) that the A, have twice the rotation rate of bispinors, and p® p, = m? where m is the

mass in Dirac’s equation. Suppose that the plane waves (6) satisfy the same conditions which are satisfied by
bispinor plane waves, given as follows:

p AR =0
pP*A,=tmlpl® 9)
where the positive sign is used for particles and the x;egiiive slgn for MMclu Since p is constant by (8),
formula (9) can be regarded as the initial conditions for the fields AX. Note that formula (9) is consistent with
P® pe = m% @ - @ = 1, and the constraint (2), and moreover, p, for particles becomes —p, for antiparticles.
Conversely, with p, so defined, formula (9) defines @ and hence the gauge generator T in formulas (6) and (7).
Substituting (8) into the first two equations (4), using (2), (5), and (9), we get:

— oy

ASA? A A
2 B1g12+ 28 om?+ 2mglpl + glpl?)
o’ LIk (10)

Aeg = —2papp + &

Note that A, = Ay, and by the constraint (2), A, is real. (Recall that AQ is real and K’, is complex.)
Now substituting (10) into the last equation (4), we get:
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am’+6mg lpl =V +@cp+ & (Ipteci®—2Ipl?) (11)

Clearly, since all other terms are real, cp is also real. Without loss of generality, we assume that ¢ > 0, hence
p is real. Choosing p 2 0 for particle plane waves and p < 0 for antiparticle plane waves, formula (11) becomes:

(s ) o (=) pmv -

(12)
with the obvious solution:
V= 523 Ipl*
m = 8
¢ (13)

We see in this case that the mass m = gc/2 is independent of amplitude.

Wave packets are defined to be plane waves with slowly changing parameters (e.g., amplitude, spin, and
momentum). To describe such wave packets we introduce “slow” coordinates y* = exP, where € is a small
parameter, into formula (6) as follows [4]:

Ad (xP) = A3 )
T\.u (xﬂ) - e2h_1_0 ohT Fa (ya)
p () = p(y*) (14)

where 0 (xP) = B(e xP), etc. The resulting equations governing the wave packets [4] are given by:

PPy = m?

va pp - vﬂpu
Vod®=0 (15)

where now p, = ¥, 6, where m = m(p) is given in formula (12), and

Jo=F vg Vg=pg/m, F-s—;‘ip2+4p3 (16)

To analyze equations (15) we now consider a space-time with one space dimension. Then v, = (vo, v,) and
the grouér —\'eioglfirmv - VI/VO'. - oL T o

~_ That s,

vo- T cne—

vi—v2
v,=vYy an
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Similarly, x* = (t, x). Formula (15) becomes:

3 d -
<1 PP + 2 (Fvy) =0

|

; (mvy) + 2 () =0

Q

(18)

The equations for the characteristic curves for (18) are easily derived (4], and are given by:

dx _ v
dt TEVS (19)

where

5= 4/Em
Fm (20)

where F’ and m’ denote the derivatives of F and m with respect to p. On the curves (19) we have:

PYFH if|
Y dv :t-F-dp ©1)

When V = % g® 1p!% m’ = 0 by formula (13) so that by (21), dv = 0, that is, v is constant on the charac-
teristic curves (19). Since then 8 = 0, the curves (19) are straight lines. It is then straightforward to show that
the wave packets are identical to bispinor wave packets.

In general, for wave packets to exist, 5, in formula (20) must be real. If V »* % g 1p1%, a general wave packet
will split into two wave packets that propagate along the characteristic curves (19).

3 CPT and Velocity Splitting

By the Cartan map, the CPT operation which, for bispinors, is given by [5]:

v (xP) =iy v (—xP) (22)

becomes for the tensor fields AX and p:

Af (x%) — AKX (—2f)
p (xP) — —p (—xP) (23)
Note that because of the constant ¢, the Yang-Mills Lagrangian L in formula (1) is not covariant under the
CPT operation (23). Nevertheless in the limiting case that the coupling constant g tends to infinity, the Euler-

Lagrange equations commute with CPT. In this section we examine the question of CPT violation for finite
coupling g.

One of the main tests for CPT covariance is the equality of particle and antiparticle masses [6]. According
to formula (13), when V = % g2 |p|* the masses are equal. Therefore, suppose instead that
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V-‘; [pl*+elpl?

(24)
where € is a small parameter. Then to first order in €, formula (12) gives:
g, &
m= + =
2" 3P (25)

Since p > 0 for particle plane waves and p < 0 for antiparticle plane waves, the mass difference Am is:

- 28
Am = 5g 1P (26)

On substituting formula (25) into (20), the velocity splitting 25 becomes, to lowest order in € and g}

(ignoring factors close to one; i.e., V%):
95 = VA_m.
m (27

Assuming a fractional mass difference for electrons ‘and positfona of one part in a million, the velocity
splitting would be 28 = 1072 or 3 X 10° meters per second, which should be observable in experiments that
measure the spreading of low energy electron wavepackets. CPT violations of 107® are consistent with current
observations of particle-antiparticle mass difference and suggest new experiments to obsewé velocity splittings
of 3 X 10° meters per second, or less [6]. : -
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